1. 拉格朗日插值法
在數(shù)值分析中,拉格朗日插值法是以法國(guó)十八世紀(jì)數(shù)學(xué)家約瑟夫·拉格朗日命名的一種多項(xiàng)式插值方法。
許多實(shí)際問(wèn)題中都用函數(shù)來(lái)表示某種內(nèi)在聯(lián)系或規(guī)律,而不少函數(shù)都只能通過(guò)實(shí)驗(yàn)和觀測(cè)來(lái)了解。如對(duì)實(shí)踐中的某個(gè)物理量進(jìn)行觀測(cè),在若干個(gè)不同的地方得到相應(yīng)的觀測(cè)值,拉格朗日插值法可以找到一個(gè)多項(xiàng)式,其恰好在各個(gè)觀測(cè)的點(diǎn)取到觀測(cè)到的值。
2. 拉格朗日插值法和牛頓插值法的異同
構(gòu)造函數(shù)4a+b+m(a^2+b^2+c^2-3)
對(duì)函數(shù)求偏導(dǎo)并令其等于0
4+2ma=0
1+2mb=0
2mc=0
同時(shí)a^2+b^2+c^2=3
所以
m=根號(hào)17/2根號(hào)3
a=-4根號(hào)3/根號(hào)17
b=-根號(hào)3/根號(hào)17
4a+b=-根號(hào)51
1、是求極值的,不是求最值的
2、如果要求最值,要把極值點(diǎn)的函數(shù)值和不可導(dǎo)點(diǎn)的函數(shù)值還有端點(diǎn)函數(shù)值進(jìn)行比較
3、書上說(shuō)是可能的極值點(diǎn),這個(gè)沒(méi)錯(cuò),比如f(x)=x^3,在x=0點(diǎn)導(dǎo)數(shù)確實(shí)為0,但是不是極值點(diǎn),所以是可能的極值點(diǎn),到底是不是要帶入原函數(shù)再看
3. c++拉格朗日插值法
拉格朗日插值公式
約瑟夫·拉格朗日發(fā)現(xiàn)的公式
拉格朗日插值公式線性插值也叫兩點(diǎn)插值,已知函數(shù)y = f (x)在給定互異點(diǎn)x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構(gòu)造一個(gè)一次多項(xiàng)式P1(x) = ax + b使它滿足條件P1 (x0) = y0 P1 (x1) = y1其幾何解釋就是一條直線,通過(guò)已知點(diǎn)A (x0, y0),B(x1, y1)。
4. 拉格朗日插值法的優(yōu)點(diǎn)
一、拉格朗日插值法
是以法國(guó)十八世紀(jì)數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名的一種多項(xiàng)式插值方法。許多實(shí)際問(wèn)題中都用函數(shù)來(lái)表示某種內(nèi)在聯(lián)系或規(guī)律,而不少函數(shù)都只能通過(guò)實(shí)驗(yàn)和觀測(cè)來(lái)了解。如對(duì)實(shí)踐中的某個(gè)物理量進(jìn)行觀測(cè),在若干個(gè)不同的地方得到相應(yīng)的觀測(cè)值,拉格朗日插值法可以找到一個(gè)多項(xiàng)式,其恰好在各個(gè)觀測(cè)的點(diǎn)取到觀測(cè)到的值。這樣的多項(xiàng)式稱為拉格朗日(插值)多項(xiàng)式。
二、Lagrange基本公式:
拉格朗日插值公式,設(shè),y=f(x),且xi< x < xi+1,i=0,1,…,n-1,有:
Lagrange插值公式計(jì)算時(shí),其x取值可以不等間隔。由于y=f(x)所描述的曲線通過(guò)所有取值點(diǎn),因此,對(duì)有噪聲的數(shù)據(jù),此方法不可取。
一般來(lái)說(shuō),對(duì)于次數(shù)較高的插值多項(xiàng)式,在插值區(qū)間的中間,插值多項(xiàng)式能較好地逼近函數(shù)y=f(x),但在遠(yuǎn)離中間部分時(shí),插值多項(xiàng)式與y=f(x)的差異就比較大,越靠近端點(diǎn),其逼近效果就越差。
三、C++實(shí)現(xiàn)
#include <iostream>
#include <conio.h>
#include <malloc.h>
double lagrange(double *x,double *y,double xx,int n)/*拉格朗日插值算法*/
{
int i,j;
double *a,yy=0.0;/*a作為臨時(shí)變量,記錄拉格朗日插值多項(xiàng)式*/
a=(double *)malloc(n*sizeof(double));
for(i=0;i<=n-1;i++)
{
a[i]=y[i];
for(j=0;j<=n-1;j++)
if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]);
yy+=a[i];
}
free(a);
return yy;
}
/
int main()
{
int i;
int n;
double x[20],y[20],xx,yy;
printf("Input n:");
scanf("%d",&n);
if(n>=20)
{
printf("Error!The value of n must in (0,20).");
getch();
return 1;
}
if(n<=0)
{
printf("Error! The value of n must in (0,20).");
getch();
return 1;
}
for(i=0;i<=n-1;i++)
{
printf("x[%d]:",i);
scanf("%lf",&x[i]);
}
printf("\n");
for(i=0;i<=n-1;i++)
{
printf("y[%d]:",i);
scanf("%lf",&y[i]);
}
printf("\n");
printf("Input?xx:");
scanf("%lf",&xx);
yy=lagrange(x,y,xx,n);
printf("x=%.13f,y=%.13f\n",xx,yy);
getch();
}
5. 拉格朗日插值法公式
構(gòu)造一組插值基函數(shù).”就是構(gòu)造一個(gè)函數(shù),這個(gè)函數(shù)在其中一點(diǎn)的值為1,其它點(diǎn)的值為0。這樣的話把n個(gè)這樣的函數(shù)加權(quán)加起來(lái)得到的函數(shù)就是在每個(gè)點(diǎn)上的值都是需要的了
6. 拉格朗日插值法c語(yǔ)言程序
拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的 多元函數(shù)的 極值的方法。
這種方法將一個(gè)有n 個(gè)變量與k 個(gè) 約束條件的最優(yōu)化問(wèn)題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問(wèn)題,其變量不受任何約束。
這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)向量的系數(shù)。
此方法的證明牽涉到偏微分, 全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。
7. 拉格朗日插值法和牛頓插值法的區(qū)別
插值法利用函數(shù)f(x)在某區(qū)間中若干點(diǎn)的函數(shù)值,作出適當(dāng)?shù)奶囟ê瘮?shù),在這些點(diǎn)上取已知值,在區(qū)間的其他點(diǎn)上用這特定函數(shù)的值作為函數(shù)f(x)的近似值。
如果這特定函數(shù)是多項(xiàng)式,就稱它為插值多項(xiàng)式。利用插值基函數(shù)很容易得到拉格朗日插值多項(xiàng)式,公式結(jié)構(gòu)緊湊,在理論分析中甚為方便,但當(dāng)插值節(jié)點(diǎn)增減時(shí)全部插值基函數(shù)均要隨之變化,整個(gè)公式也將發(fā)生變化,這在實(shí)際計(jì)算中是很不方便的,為了克服這一缺點(diǎn),提出了牛頓插值。
牛頓插值法的特點(diǎn)在于:每增加一個(gè)點(diǎn),不會(huì)導(dǎo)致之前的重新計(jì)算,只需要算和新增點(diǎn)有關(guān)的就可以了。
假設(shè)已知n+1n+1個(gè)點(diǎn)相對(duì)多項(xiàng)式函數(shù)ff的值為:(x0,f(x0)),(x1,f(x1)),(x2,f(x2)),?,(xn,f(xn)),求此多項(xiàng)式函數(shù)f。
先從求滿足兩個(gè)點(diǎn)(x0,f(x0)),(x1,f(x1))的函數(shù)f1(x)說(shuō)起:
假設(shè)f1(x)=f(x0)+b1(x?x0)f1(x)=f(x0)+b1(x?x0),
我們?cè)黾右粋€(gè)點(diǎn),(x0,f(x0)),(x1,f(x1)),(x2,f(x2)),求滿足這三個(gè)點(diǎn)的函數(shù)f2(x):
假設(shè)f2(x)=f1(x)+b2(x?x0)(x?x1),
8. 拉格朗日插值法的應(yīng)用
其實(shí)他們的區(qū)別僅僅是顏色版本上的不同而已,
前者采用的是白色的面板,后者采用的是黑色的面板,他們的內(nèi)置配置都是一模樣的,他們都承認(rèn)是高通驍龍870處理器,都支持5G雙模全網(wǎng)通功能。都累死了,4500毫安電池,支持65w的快速充電,都支持立體聲雙揚(yáng)聲器。
9. 拉格朗日插值法實(shí)驗(yàn)總結(jié)
拉格朗日乘數(shù)原理(即拉格朗日乘數(shù)法)由用來(lái)解決有約束極值的一種方法。
有約束極值:舉例說(shuō)明,函數(shù) z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問(wèn)題就叫做有約束極值問(wèn)題。
上述問(wèn)題可以通過(guò)消元來(lái)解決,例如消去x,則變成
z=(y-1)^2+y^2
則容易求解。
但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時(shí)消元將會(huì)很繁,則須用拉格朗日乘數(shù)法,過(guò)程如下:
令
f=x^2+y^2+k*((y-1)^2+y^2)
令
f對(duì)x的偏導(dǎo)=0
f對(duì)y的偏導(dǎo)=0
f對(duì)k的偏導(dǎo)=0
解上述三個(gè)方程,即可得到可讓z取到極小值的x,y值。
拉格朗日乘數(shù)原理在工程中有廣泛的應(yīng)用,以上只簡(jiǎn)單地舉一例,更復(fù)雜的情況(多元函數(shù),多限制條件)可參閱高等數(shù)學(xué)教材。
10. 拉格朗日插值法的實(shí)際應(yīng)用
線性插值也叫兩點(diǎn)插值,已知函數(shù)y = f (x)在給定互異點(diǎn)x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構(gòu)造一個(gè)一次多項(xiàng)式:P1(x) = ax + b,使它滿足條件:P1 (x0) = y0, P1 (x1) = y1 其幾何解釋就是一條直線,通過(guò)已知點(diǎn)A (x0, y0),B(x1, y1)