1. 拉格朗日公式
1拉格朗日公式
拉格朗日方程
對于完整系統(tǒng)用廣義坐標(biāo)表示的動(dòng)力方程,通常系指第二類拉格朗日方程,是法國數(shù)學(xué)家J.-L.拉格朗日首先導(dǎo)出的。通常可寫成:
式中T為系統(tǒng)用各廣義坐標(biāo)qj和各廣義速度q'j所表示的動(dòng)能;Qj為對應(yīng)于qj的廣義力;N(=3n-k)為這完整系統(tǒng)的自由度;n為系統(tǒng)的質(zhì)點(diǎn)數(shù);k為完整約束方程個(gè)數(shù)。
插值公式
線性插值也叫兩點(diǎn)插值,已知函數(shù)y = f(x)在給定互異點(diǎn)x0, x1上的值為y0= f(x0),y1= f(x1)線性插值就是構(gòu)造一個(gè)一次多項(xiàng)式
P1(x) = ax + b
使它滿足條件
P1(x0) = y0P1(x1) = y1
其幾何解釋就是一條直線,通過已知點(diǎn)A (x0, y0),B(x1, y1)。
2. 拉格朗日公式例題
舉個(gè)最簡單的例子
f(x,y)=x+y subject to the constraint:2x+y^2 -5=0
define the lagrange function
L(x,y)=x+y+λ(2x+y-5)
partial derivertive:
d(L)/d(x)=1+2λ=0
d(L)/d(y)=1+λy=0
d(L)/d(λ)=2x+y-5=0
最底下著三個(gè)方程組是怎么的出來的
f(x,y)= C ln x1+d ln x2
P1X1+P2X2=M
解
L(x,y) 分別對x,y,λ 求偏導(dǎo)
L(x,y)=C ln x1+d ln x2+λ (P1X1+P2X2-M)
分別對x1,x2,λ 求偏導(dǎo)
d(L)/d(x1)=c/x1+λp1=0
d(L)/d(x1)=d/x2+λp2=0
d(L)/d(x1)=P1X1+P2X2-M=0
3. 拉格朗日公式 叉乘
= |a||b| * (cos(θ1-θ2)) = |a| * |b| * cosθ第二步簡化的時(shí)候把(sinθ1 * sinθ2 + cosθ1 * cosθ2)簡化成了cos(θ1-θ2)但是cos(θ1-θ2)也是在|a| * |b| * cosθ的基礎(chǔ)上推導(dǎo)出來的;2;b = ax * bx + ay * by = (|a| * sinθ1) * (|b| * sinθ2) + (|a| * cosθ1) * (|b| * cosθ2)= |a||b| * (sinθ1 * sinθ2 + cosθ1 * cosθ2) /
4. 拉格朗日公式證明
拉格朗日乘數(shù)原理(即拉格朗日乘數(shù)法)由用來解決有約束極值的一種方法。
有約束極值:舉例說明,函數(shù) z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問題就叫做有約束極值問題。
上述問題可以通過消元來解決,例如消去x,則變成
z=(y-1)^2+y^2
則容易求解。
但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時(shí)消元將會很繁,則須用拉格朗日乘數(shù)法,過程如下:
令
f=x^2+y^2+k*((y-1)^2+y^2)
令
f對x的偏導(dǎo)=0
f對y的偏導(dǎo)=0
f對k的偏導(dǎo)=0
解上述三個(gè)方程,即可得到可讓z取到極小值的x,y值。
拉格朗日乘數(shù)原理在工程中有廣泛的應(yīng)用,以上只簡單地舉一例,更復(fù)雜的情況(多元函數(shù),多限制條件)可參閱高等數(shù)學(xué)教材。
5. 二元函數(shù)的拉格朗日公式
拉格朗日定理
數(shù)理科學(xué)定理
拉格朗日定理存在于多個(gè)學(xué)科領(lǐng)域中,分別為:流體力學(xué)中的拉格朗日定理;微積分中的拉格朗日定理;數(shù)論中的拉格朗日定理;群論中的拉格朗日定理。
正壓理想流體在質(zhì)量力有勢的情況下,如果初始時(shí)刻某部分流體內(nèi)無渦,則在此之前或以后的任何時(shí)刻中這部分流體皆為無渦。以某一起始時(shí)刻每個(gè)質(zhì)點(diǎn)的坐標(biāo)位置(a、b、c),作為該質(zhì)點(diǎn)的標(biāo)志。 如果在一個(gè)正整數(shù)的因數(shù)分解式中,沒有一個(gè)數(shù)有形式如4k+3的質(zhì)數(shù)次方,該正整數(shù)可以表示成兩個(gè)平方數(shù)之和。
6. 積分拉格朗日公式
拉格朗日(Lagrange)余項(xiàng): ,其中θ∈(0,1)。 拉格朗日余項(xiàng)實(shí)際是泰勒公式展開式與原式之間的一個(gè)誤差值,如果其值為無窮小,則表明公式展開足夠準(zhǔn)確。 證明: 根據(jù)柯西中值定理: 其中θ1在x和x0之間;繼續(xù)使用柯西中值定理得到: 其中θ2在θ1和x0之間;連續(xù)使用n+1次后得到: 其中θ在x和x0之間;
7. 拉格朗日公式的等價(jià)形式
=lalbl*(cos(e1-82))=lal*lbl*cose第二步簡
化的時(shí)候把(sine1*sine2+cos01*cose2)簡化
成了cos(e1-02)但是cos(e1-02)也是在al*lbl*c
ose的基礎(chǔ)上推導(dǎo)出來的;2;b=ax*bx+ay *by=
(lal*sine1)*(Ibl*sine2)+(lal*cose1)*(lbl*
cose2)=lallbl*(sine1* sine2+cose1*cose2)