1. 拉格朗日流體
[拉格朗日(Lagrange)中值定理]若函數f(x)滿足條件:
(1)在閉區間[a,b]上連續;
(2)在開區間(a,b)內可導,則在(a,b)內至少存在一點ξ,使得
顯然,羅爾定理是拉格朗日中值定理當f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
2. 拉格朗日流體力學
一.線性插值(一次插值) 已知函數f(x)在區間[xk ,xk+1 ]的端點上的函數值yk =f(xk ), yk+1 = f(xk+1 ),求一個一次函數y=P1 (x)使得yk =f(xk ),yk+1 =f(xk+1 ), 其幾何意義是已知平面上兩點(xk ,yk ),(xk+1 ,yk+1 ),求一條直線過該已知兩點。
首先,插值法是:利用函數f (x)在某區間中插入若干點的函數值,作出適當的特定函數,在這些點上取已知值,在區間的其他點上用這特定函數的值作為函數f (x)的近似值,這種方法稱為插值法.
其目的便就是估算出其他點上的函數值.
而拉格朗日插值法就是一種插值法.
3. 拉格朗日流體力學方程
關于代數方程的求解,從16世紀前半葉起,已成為代數學的首要問題,一般的三次和四次方程解法被意大利的幾位數學家解決.在以后的幾百年里,代數學家們主要致力于求解五次乃至更高次數的方程,但是一直沒有成功.對于方程論,拉格朗日比較系統地研究了方程根的性質(1770),正確指出方程根的排列與置換理論是解代數方程的關鍵所在,從而實現了代數思維方式的轉變.盡管拉格朗日沒能徹底解決高次方程的求解問題,但是他的思維方法卻給后人以啟示
4. 流體拉格朗日方法
拉格朗日插值公式
線性插值也叫兩點插值,已知函數y=f(x)在給定互異點x0,x1上的值為y0=f(x0),y1=f(x1)線性插值就是構造一個一次多項式p1(x)=ax+b使它滿足條件p1(x0)=y0p1(x1)=y1其幾何解釋就是一條直線,通過已知點a(x0,y0),b(x1,y1)。線性插值計算方便、應用很廣,但由于它是用直線去代替曲線,因而一般要求[x0,x1]比較小,且f(x)在[x0,x1]上變化比較平穩,否則線性插值的誤差可能很大。為了克服這一缺點,有時用簡單的曲線去近似地代替復雜的曲線,最簡單的曲線是二次曲線,用二次曲線去逼近復雜曲線的情形。
5. 拉格朗日流體網絡
設給定二元函數z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點,先做拉格朗日函數,其中λ為參數。求L(x,y)對x和y的一階偏導數,令它們等于零,并與附加條件聯立,即
L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,
L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,
φ(x,y)=0
由上述方程組解出x,y及λ,如此求得的(x,y),就是函數z=?(x,y)在附加條件φ(x,y)=0下的可能極值點。
6. 拉格朗日流體求解器
約瑟夫·拉格朗日
外文名
Joseph-Louis Lagrange
別名
拉格朗日
性別
男
出生日期
1736年
去世日期
1813年4月10日
國籍
法國
出生地
意大利都靈
職業
數學家
物理學家
代表作品
《關于解數值方程》和《關于方程的代數解法的研究》
主要成就
拉格朗日中值定理等
數學分析的開拓者
7. 拉格朗日流體模型
拉格朗日法是描述流體運動的兩種方法之一,又稱隨體法,跟蹤法。
是研究流體各個質點的運動參數(位置坐標、速度、加速度等)隨時間的變化規律。綜合所有流體質點運動參數的變化,便得到了整個流體的運動規律。
在研究波動問題時,常用拉格朗日法
8. 拉格朗日流體連續方程推導
f(9)-f(4)=f′(x0)(9-4)
證明:由f(x)=√x,
∴f′(x)=1/2√x,
1/2√x=(√9-√4)/(9-4)
1/2√x=1/5
∴x0=25/4.
9. 流體 歐拉 拉格朗日
利用EDEM-FLUENT聯合仿真,采用VOF(Volume of Fluid)法和歐拉-拉格朗日模型,組成離散固體與連續的液相和氣相的混合模型,對攪拌罐內固-液-氣三相流動進行數值模擬,探究固體顆粒在攪拌罐內的運動狀態和自由液面對其分散的影響.
基于FLUENT軟件的VOF法對氣-液連續相建模,很好地捕捉氣液分界面,模型更接近實際工況,直觀顯示自由液面的變化;基于離散元法使用軟件EDEM對固體顆粒進行離散單元建模,通過兩軟件的聯合仿真直觀模擬固體顆粒在罐內的位置信息和運動情況,得到的固體顆粒分散情況與利用歐拉法得到的結果一致.
10. 拉格朗日流體連續方程推導歐拉連續方程
1拉格朗日公式
拉格朗日方程
對于完整系統用廣義坐標表示的動力方程,通常系指第二類拉格朗日方程,是法國數學家J.-L.拉格朗日首先導出的。通常可寫成:
式中T為系統用各廣義坐標qj和各廣義速度q'j所表示的動能;Qj為對應于qj的廣義力;N(=3n-k)為這完整系統的自由度;n為系統的質點數;k為完整約束方程個數。
插值公式
線性插值也叫兩點插值,已知函數y = f(x)在給定互異點x0, x1上的值為y0= f(x0),y1= f(x1)線性插值就是構造一個一次多項式
P1(x) = ax + b