一、泰勒公式拉格朗日余項(xiàng)取值范圍?
拉格朗日(Lagrange)余項(xiàng): ,其中θ∈(0,1)。 拉格朗日余項(xiàng)實(shí)際是泰勒公式展開式與原式之間的一個(gè)誤差值,如果其值為無窮小,則表明公式展開足夠準(zhǔn)確。 證明: 根據(jù)柯西中值定理: 其中θ1在x和x0之間;繼續(xù)使用柯西中值定理得到: 其中θ2在θ1和x0之間;連續(xù)使用n+1次后得到: 其中θ在x和x0之間;
二、泰勒公式的拉格朗日余項(xiàng)怎么理解?
拉格朗日(Lagrange)余項(xiàng): ,其中θ∈(0,1)。 拉格朗日余項(xiàng)實(shí)際是泰勒公式展開式與原式之間的一個(gè)誤差值,如果其值為無窮小,則表明公式展開足夠準(zhǔn)確。 證明: 根據(jù)柯西中值定理: 其中θ1在x和x0之間;繼續(xù)使用柯西中值定理得到: 其中θ2在θ1和x0之間;連續(xù)使用n+1次后得到: 其中θ在x和x0之間;同時(shí): 進(jìn)而: 綜上可得:
三、高等數(shù)學(xué)入門——帶拉格朗日余項(xiàng)的泰勒公式?
1.帶皮亞諾余項(xiàng)泰勒公式的不足。
2.帶拉格朗日余項(xiàng)的泰勒公式。
3.對(duì)(拉格朗日余項(xiàng))泰勒公式的一些說明。
4.誤差分析的一般結(jié)論(實(shí)際應(yīng)用時(shí)須具體問題具體分析)。
5.附錄:泰勒中值定理2的證明。
擴(kuò)展資料:
高等數(shù)學(xué)指相對(duì)于初等數(shù)學(xué)而言,數(shù)學(xué)的對(duì)象及方法較為繁雜的一部分。廣義地說,初等數(shù)學(xué)之外的數(shù)學(xué)都是高等數(shù)學(xué),也有將中學(xué)較深入的代數(shù)、幾何以及簡(jiǎn)單的集合論初步、邏輯初步稱為中等數(shù)學(xué)的,將其作為中小學(xué)階段的初等數(shù)學(xué)與大學(xué)階段的高等數(shù)學(xué)的過渡。
四、弗格和泰勒多大歲?
弗格身高1米91,年齡31歲,曾經(jīng)在廣州隊(duì)和北控隊(duì)效力過,是一名個(gè)人攻擊能力非常強(qiáng)的球員。
泰勒29歲,身高2.08米,司職前鋒,2011年通過選秀進(jìn)入NBA,先后效力于勇士、老鷹、尼克斯和火箭。2014年效力過CBA聯(lián)賽,加盟過山西、福建和天津。
五、拉格朗日條件?
[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:
(1)在閉區(qū)間[a,b]上連續(xù);
(2)在開區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得
顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時(shí)的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
六、拉格朗日法則?
拉格朗日法是描述流體運(yùn)動(dòng)的兩種方法之一,又稱隨體法,跟蹤法。
是研究流體各個(gè)質(zhì)點(diǎn)的運(yùn)動(dòng)參數(shù)(位置坐標(biāo)、速度、加速度等)隨時(shí)間的變化規(guī)律。綜合所有流體質(zhì)點(diǎn)運(yùn)動(dòng)參數(shù)的變化,便得到了整個(gè)流體的運(yùn)動(dòng)規(guī)律。
在研究波動(dòng)問題時(shí),常用拉格朗日法
七、拉格朗日系數(shù)?
設(shè)給定二元函數(shù)z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點(diǎn),先做拉格朗日函數(shù),其中λ為參數(shù)。求L(x,y)對(duì)x和y的一階偏導(dǎo)數(shù),令它們等于零,并與附加條件聯(lián)立,即
L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,
L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,
φ(x,y)=0
由上述方程組解出x,y及λ,如此求得的(x,y),就是函數(shù)z=?(x,y)在附加條件φ(x,y)=0下的可能極值點(diǎn)。
八、拉格朗日著作?
約瑟夫·拉格朗日
外文名
Joseph-Louis Lagrange
別名
拉格朗日
性別
男
出生日期
1736年
去世日期
1813年4月10日
國(guó)籍
法國(guó)
出生地
意大利都靈
職業(yè)
數(shù)學(xué)家
物理學(xué)家
代表作品
《關(guān)于解數(shù)值方程》和《關(guān)于方程的代數(shù)解法的研究》
主要成就
拉格朗日中值定理等
數(shù)學(xué)分析的開拓者
九、拉格朗日極值?
在數(shù)學(xué)最優(yōu)化問題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的多元函數(shù)的極值的方法。這種方法將一個(gè)有n 個(gè)變量與k 個(gè)約束條件的最優(yōu)化問題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)矢量的系數(shù)。
引入新變量拉格朗日乘數(shù),即可求解拉格朗日方程
此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。
十、拉格朗日余項(xiàng)公式和用法?
線性插值也叫兩點(diǎn)插值,已知函數(shù)y = f (x)在給定互異點(diǎn)x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構(gòu)造一個(gè)一次多項(xiàng)式:P1(x) = ax + b,使它滿足條件:P1 (x0) = y0, P1 (x1) = y1
其幾何解釋就是一條直線,通過已知點(diǎn)A (x0, y0),B(x1, y1)。
線性插值計(jì)算方便、應(yīng)用很廣,但由于它是用直線去代替曲線,因而一般要求[x0, x1]比較小,且f(x)在[x0, x1]上變化比較平穩(wěn),否則線性插值的誤差可能很大。為了克服這一缺點(diǎn),有時(shí)用簡(jiǎn)單的曲線去近似地代替復(fù)雜的曲線,最簡(jiǎn)單的曲線是二次曲線,用二次曲線去逼近復(fù)雜曲線的情形。